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We describe the surprising phenomenon of near-perfect coupling from free space into uniform two-
dimensional rod-type photonic crystals over a wide range of incident angles. This behavior is shown to be a
generic feature of many rod-type photonic crystal structures that is related to strong forward scattering reso-
nances of the individual cylinders. We explain these results using both semianalytic analysis and two-
dimensional numerical calculations and identify the conditions under which efficient, wide-angle coupling can
occur. The results may lead to more efficient designs for in-band photonic crystal devices such as superprisms
and self-collimation based photonic circuits.

DOI: 10.1103/PhysRevE.74.026603 PACS number�s�: 42.70.Qs, 42.25.Bs, 42.25.Fx, 42.79.Dj

I. INTRODUCTION

Photonic crystals �PCs� are one of the most versatile
structures being considered as a platform for future inte-
grated optical chips. When operating at frequencies within a
photonic band gap, two-dimensional �2D� PCs can be used
for wave guiding, resonant structures, lasers, filters, and a
range of other operations. Alternatively, when light is
coupled into propagating Bloch modes of the PC, the peri-
odic structure can exhibit unique dispersion characteristics.
In this case, one can access a range of other interesting prop-
erties such as superprism effects, negative refraction, perfect
lensing, and autocollimation. To use these effects in practical
devices it is essential that light can be coupled efficiently
into and out of the PC structure with minimal backreflection.
This is necessary not only to keep the insertion losses low,
but also to prevent light from being scattered into other parts
of a device where it may cause interference and crosstalk.
The latter issue will be especially important in compact in-
tegrated optical circuits consisting of many components on a
single chip.

While one of the main attractions of PC devices is their
compactness, this also presents many practical challenges
when interfacing these PC components to conventional opti-
cal systems. Several efficient methods have been developed
for coupling to waveguide-based devices �1–4�, but the chal-
lenge remains to find a practical solution for coupling light
into the extended Bloch modes of a uniform PC lattice for
in-band applications. The main approaches proposed in the
literature for improving coupling to air-hole type PCs in-
volve modifications to the front and rear interfaces of the
structure. One such method is analogous to conventional
thin-film coatings whereby the first few layers of cylinders
are tuned to enhance the transmission properties via resonant
coupling. This approach tends to result in narrow bandwidth
transmission �5�, although the bandwidth can be improved
with multilayered gratings �6�. A second approach is to
change the size and/or shape of the air holes to modify

gradually the field profile as it approaches the PC slab, ef-
fectively creating an apodized interface �5,7�. An alternative
method proposed by Witzens et al. �8�, that does not require
interface modifications, is to place a waveguide above a PC
slab and use evanescent coupling to transfer light from the
waveguide into counterpropagating Bloch modes of the PC.

Here we study the transmission properties of rod-type PCs
and demonstrate that it is possible to couple more than 99%
of incident light into such structures over a wide range of
incident angles. In contrast to hole-type PCs, this can be
achieved without making any modifications to the interface.
The geometry we consider is shown in Fig. 1: a plane wave
is incident from free space at an angle �0 onto a semi-infinite
2D PC consisting of dielectric rods of refractive index �
=�c, embedded in air ��=1�. This is a generic problem that is
relevant to almost all applications in which light must be
coupled into the Bloch modes of a uniform PC.

We recently reported the optimization of a PC to exhibit
both highly efficient coupling and self-collimation properties
�9� for angles of incidence −22.5° ��0�22.5°. This was
achieved in a rod-type PC slab geometry without modifica-
tion to the interface of the PC. In this paper we investigate
the underlying physics that determines the coupling proper-
ties of rod-type PCs and identify the conditions under which
efficient coupling occurs. The remainder of this paper con-
sists of five sections. In Sec. II, we present numerical results
for plane wave transmission into semi-infinite 2D rod-type
PCs as in Fig. 1 and demonstrate highly efficient coupling
for a wide range of incident angles. In Sec. III we show that
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FIG. 1. Geometry used to calculate the transmission of a plane

wave incident on a semi-infinite PC at an angle �0.
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the high transmission features coincide with forward scatter-
ing resonances of the individual cylinders, and show that this
leads to a simple physical interpretation of the PC transmis-
sion results. A rigorous analysis of this relationship is pre-
sented in Secs. IV and V via the properties of a one-
dimensional �1D� infinite array of cylinders, i.e., a grating. In
Sec. IV we derive a semianalytic result showing that near-
perfect coupling occurs when each constituent grating layer
of the PC scatters all incident light into a single forward-
propagating grating order. We next present in Sec. V an
analysis of the grating properties and show that nulls in the
grating reflectance spectrum occur close to the forward scat-
tering resonances of the individual cylinders. We conclude
with the identification of two conditions for near-perfect cou-
pling: first, the incident light must be mostly forward scat-
tered by each of the cylinders, and second, each grating layer
forming the PC lattice must scatter light into only a single
propagating grating order.

II. PLANE WAVE TRANSMISSION PROPERTIES

In this section we consider the geometry shown in Fig. 1
in which a plane wave is incident at an angle �0 onto a
semi-infinite 2D PC. The reflection of the incident field is
described by the matrix R�, defined as the reflection scatter-
ing matrix for a plane wave incident from free space onto a
semi-infinite PC. In this notation, the �i , j�th element of R� is
the complex amplitude for reflection into grating order i for a
plane wave incident in order j with unit power. Here, we
calculate R� using a Bloch mode scattering matrix method
�10,11� �BMM�, which yields the reflection into both propa-
gating and evanescent grating orders. Since we are interested
in the reflected power, and no energy is carried away from
the PC interface by the evanescent states, R� is truncated to
contain only those elements corresponding to propagating
plane wave orders. Thus, when only a single reflected order
is supported, R� can be treated as a scalar and the total
reflected power is �R= �R��2. When multiple reflected orders
are present, the total reflectance is calculated as a sum over
the reflectance into each order. For the purely 2D structures
composed of lossless dielectrics considered here, there are no
additional loss mechanisms so the transmitted power is sim-
ply �T=1−�R.

The BMM is a powerful tool for understanding single
interface properties as it allows semi-infinite structures to be
studied without the need for absorbing boundary conditions.
Thus, the interface reflection effects can be isolated from the
coherent reflection effects observed in structures with a finite
number of PC layers. The BMM also provides a rigorous
mathematical framework for studying how each component
of the PC contributes to the properties of the bulk structure.
In the BMM formulation, the bulk PC properties are calcu-
lated from the scattering properties of the individual grating
layers which, in turn, are derived using a multipole method
that implicitly includes the scattering characteristics of the
individual cylinders. This systematic breakdown of the struc-
ture into basic components is used in Secs. IV and V to
explain the origin of the highly efficient transmission illus-
trated in Fig. 2.

Figure 2�a� shows the transmittance of an incident plane
wave as a function of �0 and normalized frequency d /� for
a square lattice PC of rods with �c=3.0 and rc=0.34d. The
light is polarized with the electric field parallel to the cylin-
ders �TM�. The striking feature in this figure is the white
high transmission “finger” crossing the diagram at a dimen-
sionless frequency of approximately d /�=0.34 lying in the
second band. At this frequency, indicated by the black
dashed line in Fig. 2�a�, the transmittance into the PC ex-
ceeds 99.4% for incident angles from 0° to 80°, as shown in
Fig. 2�b�. The third band also exhibits a high transmission
region ��T�99.5% �, indicated by the white band near d /�
=0.58, although this only extends to incident angles of about
30°. We also note that the transmittance into the first band,
although relatively high for normal incidence, does not ex-
ceed 90%.

Similar features to those shown in Fig. 2 occur in a wide
range of rod-type PC structures, for both TE �magnetic field
parallel to cylinders� and TM �electric field parallel to cylin-
ders� polarizations and for both square and triangular lattices.
To illustrate the generic nature of the high transmission fea-
tures, Fig. 3 shows the maximum acceptance angle �max plot-
ted as a function of the cylinder radius for three different
transmittance levels. Here �max is defined for a transmittance
Tmin such that T�Tmin for all angles in the range 0� ��0�
��max. In the range 0.32�rc /d�0.4, more than 99% of the
incident light is transmitted into the PC for all incident
angles up to 60°. We also find that the peaks in the transmis-
sion spectrum depend only weakly on the lattice period and
incident angle and are almost identical for square and trian-
gular lattices formed from the same rods. These last three

FIG. 2. �a� Transmittance �T vs dimensionless frequency d /�
and incident angle �0 for the 2D PC described in the text. The
dashed white line indicates the maximum frequency for which the
single diffracted grating order condition is satisfied, as discussed in
Sec. V. �b� Transmittance vs �0 at d /�=0.34, indicated by the
dashed black line in �a�.
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observations imply that the near-perfect transmission fea-
tures observed in Fig. 2 result from a property of the indi-
vidual rods rather than the bulk lattice.

While in the remainder of this paper we present numerical
results for the PC considered in Fig. 2, the analysis is gen-
erally applicable. We show in the following sections that the
high-transmission properties originate from the individual
scattering characteristics of the high-index rods, which influ-
ence the properties of a layer of cylinders, and in turn the
properties of the 2D lattice of rods. In Sec. III, we discuss the
relevant scattering properties of a single dielectric cylinder:
the scattering cross section and the asymmetry parameter.

III. SINGLE CYLINDER SCATTERING

Although photonic crystals rely intrinsically on coherent
scattering for many of their unique properties, the individual
scattering elements contribute to the detailed characteristics
of the structure. Economou �12� and Soukoulis �13� showed
a correspondence between the bandgaps in three-dimensional
�3D� PCs formed from dielectric spheres and the Mie reso-
nances of the spheres and similar results have been shown
for 2D PCs consisting of dielectric cylinders �14�. The rela-
tionship between scattering resonances and PC transmittance
properties is not so well understood. Gantzounis et al. �15�
recently related Mie resonances to resonant reflection and
transmission in 3D PCs of polaritonic spheres, but only pre-
sented results for normal incidence. Here we consider 2D
PCs of dielectric cylinders and show that there is not only a
correspondence between cylinder resonances and band posi-
tion, but also a direct relationship between forward scattering
and the transmittance of plane waves incident on a PC. Al-
though the results presented here are strictly 2D, 3D finite
difference time domain �FDTD� calculations indicate that the
characteristic high transmission features are also exhibited in
realistic PC slab structures consisting of finite length rods
�9�.

The scattering properties of an infinite dielectric cylinder
are well understood and can be calculated for nonconical
incidence following the method of van de Hulst �16�. While
the treatment presented here is identical to that in Ref. �16�,

the notation is modified in order to maintain consistency with
the multipole analysis in Sec. V. Results are presented for
TM polarization but similar scattering behavior also occurs
for TE polarization.

Consider first the geometry illustrated in Fig. 4 in which a
plane wave of TM polarization is incident on a cylinder of
radius a and refractive index �c in air. Note that in this ge-
ometry, 	=
 /2�−
 /2� corresponds to backward �forward�
scattering. The electric field �Ez=V�r�exp�−i�t�� external to
the cylinder is expanded in a basis of cylindrical harmonic
functions

V�r� = �
n=−�

�

�anJn�kr� + bnHn
�1��kr��ein	, �1�

where �r ,	�= �x ,y�, with x=r cos 	 and y=r sin 	. The scat-
tered field is associated with the bn coefficients and the inci-
dent field with the an coefficients. The incident plane wave
field can be written as

Vi = e−ikr sin 	 �2�

=�
n

anJn�kr�ein	, where an = �− 1�n. �3�

Using the standard approach for deriving the outgoing field
coefficients bn, the tangential field components are matched
on the cylinder boundary, which imposes the condition
�16,17�

bn = Rnan, where Rn = −
1

1 + iMn
�4�

and

FIG. 3. Maximum acceptance angle �max plotted as a function
of normalized cylinder radius for a square lattice of rods of index
�c=3.0 in air. The three curves correspond to minimum transmit-
tance levels of 90%, 95%, and 99% for an incident plane wave of
TM polarization.

FIG. 4. Single cylinder scattering geometry: plane wave incident
from above is scattered in directions 	, where 	=−
 /2 corresponds
to forward scattering.
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Mn =
�cJn��k�crc�Yn�krc� − Jm�k�crc�Ym� �krc�
�cJn��k�crc�Jn�krc� − Jm�k�crc�Jm� �krc�

, �5�

for TM polarization.
Here we are most interested in the far-field form of the

scattered field that follows from the large-argument asymp-
totics of the Hankel functions �18�, and which leads to

Vs�r� = �
n

bnHn
�1��kr�ein	 �6�

�� 2


kr
ei�kr−
/4�Tc�	� , �7�

where

Tc�	� = �
n

bnein�	−
/2�. �8�

Two scattering parameters relevant to this discussion are the
scattering cross section per unit length of the cylinder

cscat =
2


k
	

−





�Tc�	��2d	 =
4

k
�

n=−�

�

�bn�2, �9�

and the asymmetry parameter, defined as the weighted aver-
age of −sin�	� with respect to the scattering amplitude

g = − 
sin�	�� = −

	
−





�Tc�	��2 sin�	�d	

	
−





�Tc�	��2d	

. �10�

Here, �g��1 and g�0 �g�0� corresponds to dominant for-
ward �backward� scattering.

Figure 5�a� shows the normal incidence transmittance
spectrum for the square PC lattice considered in Fig. 2. The
curves in Figs. 5�b� and 5�c� show the scattering cross sec-
tion and asymmetry parameter, respectively, as functions of
rc /� for a single cylinder of index �c=3.0 in air. In both
plots, the solid curve is calculated for a multipole truncation
order of Nm=3, where Eq. �8� is summed over n=−Nm ,
−Nm+1, . . . ,Nm. The remaining curves correspond to trunca-
tion orders of Nm=0,1 ,2. Observe that the single monopole
term �Nm=0� describes accurately the single cylinder prop-
erties for frequencies up to the first band of the PC, while the
dipole approximation �Nm=1� is sufficient for the second
band. While additional multipole terms are required in the
field expansion for higher frequencies, the Nm=3 curves in
Figs. 5�b� and 5�c� have converged to graphical accuracy for
the plotted frequency range. The relative importance of each
multipole order can also be inferred from Fig. 5�d� which
shows the amplitudes of the first four multipole coefficients
�bn�. In Sec. V we use the dipole approximation to derive a
semianalytic result relating the single cylinder scattering
resonances to the transmission of a grating.

Figures 5�a� and 5�b� show a clear correspondence be-
tween the band position �indicated by nonzero transmittance�
and peaks in cscat, as has been observed by others �13,14�.
This does not explain, however, why the transmittance into

the second and third bands exceeds 99%, whereas transmit-
tance into the first band is less than 90%. To understand this
feature, it is necessary to consider the direction of the scat-
tered fields, as measured by the asymmetry parameter in Fig.

FIG. 5. �a� Normal incidence transmittance for the PC lattice
considered in Fig. 2. �b�, �c� Single cylinder scattering cross section
and asymmetry parameter, respectively, plotted as a function of
rc /� for the same frequency range as �a�. Both parameters are cal-
culated for multipole truncation orders Nm=0,1 ,2 ,3, where the
Nm=3 curve �solid� is converged to within graphical accuracy. �d�
Multipole scattering coefficients �bn� plotted for n=0–3. Shaded
regions in �a�–�d� indicate the band gaps of the bulk PC. �e�–�i�
Scattering patterns given by �T�	��2 /k for rc /�=0.034, 0.085, 0.116,
0.163, and 0.204 for light incident from above.
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5�c� and the scattering patterns �e�–�i�, plotted for frequen-
cies in the first band, the first gap, the second band, the
second gap, and the third band, respectively. The scattering
patterns are polar plots of �Tc�	��2 /k, such that the area en-
closed by each diagram is proportional to cscat. In the second
and third bands, where the transmittance is highest, the peak
in cscat coincides approximately with a peak in g, indicating a
forward scattering resonance. In the first band g remains
positive but approaches zero, despite there being a small,
broad peak in cscat. Thus, although there is still significant
scattering from each cylinder at low frequencies, the scatter-
ing direction is almost isotropic, with Eqs. �7�–�9� being
dominated by the b0 term as discussed above. This can also
be observed in the scattering patterns in Figs. 5�e� and 5�f�.
As the frequency is increased, higher-order scattering terms
become significant and can result in strong directional scat-
tering. For example, the cscat peaks near d /�=0.36�rc /�
=0.112� and d /�=0.60�rc /�=0.204� correspond to maxima
in b1 and b2, respectively, as seen in Fig. 5�d�. Each of these
resonances results in strong forward scattering as indicated
by the g curve of Fig. 5�c� and the scattering patterns in Figs.
5�g� and 5�i�.

While the results plotted in Fig. 5 are not conclusive proof
that scattering resonances of individual cylinders enhance the
transmission into a PC, they provide a physically intuitive
explanation for the results in Fig. 2. In the next two sections
we provide a rigorous mathematical analysis that demon-
strates first, the relationship between the transmission prop-
erties of a grating and those of a bulk PC, and second, the
relationship between single cylinder resonances and grating
transmission properties.

IV. RELATIONSHIP BETWEEN GRATING AND PC
TRANSMISSION PROPERTIES

In this section we derive a semianalytic expression relat-
ing the plane wave reflection properties of a semi-infinite PC
to the scattering of a plane wave from a single grating layer
of cylinders. The analysis is valid in the long wavelength
regime in which there is only a single propagating plane
wave order in reflection and transmission. For a PC consist-
ing of dielectric rods in free space, this corresponds to scaled
frequencies of d /��1/ �1+ �sin��0���. In Fig. 2, the single
grating order condition is satisfied below the dashed white
line, and so the treatment is valid for the first two bands at all
incident angles, and the third band for �0�50°. In this re-
gime, the reflectance of the bulk PC is determined largely by
the reflectance of the constituent grating as can be seen in
Fig. 6, which shows the normal incidence transmittance
spectra for the bulk PC and a single grating layer. Observe
that the perfect transmission features in the PC spectrum co-
incide exactly with those of the grating. Thus, the study of
efficient coupling of light into a bulk PC can be reduced to
the less complex grating problem.

Consider first the calculation of the plane wave scattering
matrix R�, which characterizes the reflection of a plane wave
incident on a semi-infinite PC from free space at an angle �0.
Within the PC, each layer is treated as a 1D infinite grating
of cylinders, and the fields between each layer are expressed

in terms of plane waves �10�. For a given grating in the PC,
the fields above and below �denoted by j=1 and j=2, respec-
tively� are expanded in the form

V�j��x,y� = �
p=−�

�

p
−1/2�fp

�j�−e−ip�y−yj� + fp
�j�+eip�y−yj��ei�px,

�11�

where k=2
 /�, �0=k sin��0�, �p=�0+ pK, p=�k2−�p
2,

and K=2
 /d. In the Bloch mode scattering matrix method
�10� we may write R�=F+F−

−1, where F− and F+ are ma-
trices whose columns contain the forward �f−� and backward
�f+� propagating parts of the plane wave representations of
the Bloch modes of the bulk structure.

In the long wavelength regime that is of interest, there is
only a single propagating plane wave and so the transmit-
tance into the crystal is given by

�T = 1 − �R��00��2, �12�

where the subscripted �00� refers to the specular order of
diffraction for both reflected and transmitted waves. We now
seek to relate the reflection properties of the bulk structure,
encapsulated within R�, to the corresponding properties of
the gratings that constitute the crystal. These are linked by
the transfer matrix eigenvalue equation �19�

Tf = �f , �13�

where

T = �T − R�T�−1R R�T�−1

− T�−1R T�−1  and f = �f−

f+  , �14�

with R and T denoting the reflection and transmission scat-
tering matrices for a grating layer for incidence from above,
and R� and T� being the corresponding quantities for inci-
dence from below �19�.

When the spatial frequency of the fields is sufficiently
low, i.e., for sufficiently long wavelengths, the high fre-
quency components of the field expansions can be removed
and a scalar approximation �comprising only the single
specular order� used in place of the rigorous solution. Pro-
ceeding formally with this assumption, we are led to an ei-
genvalue equation which appears as a quadratic equation

FIG. 6. Normal incidence grating �dashed curve� and PC �solid
curve� transmittance spectra for the PC considered in Sec. II.
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�2 − 2b� + 1 = 0, where b =
T2 − RR� + 1

2T
. �15�

Here, R and T refer to the specular order elements R00 and
T00 of the respective grating scattering matrices. Note that in
the scalar approximation, T=T�, by reciprocity. Furthermore,
in a square lattice each grating layer must exhibit up-down
symmetry such that R=R�. Accordingly, b may be reduced to
b=cos�argT� / �T� for a lossless square lattice after observing
that �R�2+ �T�2=1 and argT−argR= ±
 /2. Note that in a pass-
band of the PC, in which we expect complex � of unit mag-
nitude, �b��1. Further manipulation of the transfer matrix
equation �14� allows us to derive a quadratic equation in
R�= f+ / f−, that links directly the reflection characteristics of
the semi-infinite PC and the transmission and reflection
properties of the grating, namely,

R�
2 − 2cR� + 1 = 0,

where c = −
T2 − R2 − 1

2R
=

cos�argR�
�R�

. �16�

Here, b and c are functions of grating reflection and trans-
mission only and are related to one another by

c2 − 1 =
�T�2

�R�2
�1 − b2� . �17�

Hence, we deduce that c�1 or c�−1 in a passband, yield-
ing two real solutions for R� that are reciprocals of one an-
other, with the physical solution chosen according to �R��
�1. It is straightforward to show that a low reflectance of
the constituent grating, �R�2, leads to a low reflectance of the
bulk structure �R��2, with the two quantities related by

R� �
1

2c
=

�R�
2 cos�argR�

. �18�

Equation �18� is consistent with the results in Fig. 6,
which clearly illustrates the coincidence of the near-zero re-
flectance features in the grating and the semi-infinite PC
transmission spectra. Hence, our study of the highly efficient
coupling shown in Fig. 2 is simplified to one of understand-
ing perfect transmission of a plane wave through a 1D grat-
ing of cylinders. This is the subject of the next section in
which we demonstrate that such spectral features are closely
related to forward scattering resonances of the constituent
cylinders.

V. RELATIONSHIP BETWEEN SINGLE-CYLINDER
SCATTERING AND GRATING TRANSMISSION

PROPERTIES

In this section we focus on the transmission properties of
a grating composed of a 1D array of identical cylinders and
show that the minimum reflectance occurs at frequencies
close to the scattering resonances of the individual cylinders
that form the grating. Moreover, we explain why this fre-
quency does not change significantly with incident angle.
When combined with the results of Sec. IV, the analysis pro-

vides a direct link between the cylinder scattering resonances
and efficient coupling to the bulk PC lattice.

We begin by considering the multipole formulation for
diffraction of a plane wave by a grating composed of cylin-
ders of radius rc, refractive index �c and period d. A plane
wave field � incident from above at an angle �0 gives rise to
plane wave fields above and below the grating composed of
a superposition of propagating and evanescent grating or-
ders. Similar to the single cylinder, the field in the vicinity of
each cylinder is expanded in terms of cylindrical harmonics
in the form of Eq. �1� where the bn coefficients are again
associated with the scattered field. The an coefficients are
derived by observing that the regular part of the field in the
vicinity of any cylinder is due to the outgoing field sourced
on all other cylinders plus fields generated by exterior
sources �which in this case is the incident plane wave�. This
leads to the matrix field identity �17�

a = Sb + J−�−1/2� �19�

in which S= �Slm�= �Sl−m�, with the Sn denoting the lattice
sums

Sn = �
s�0

Hn
�1��k�s�d�e−in arg�s�ei�0sd �20�

that characterize the scattering contributions associated with
a particular multipole order due to the entire grating. The
matrix J−= �Jnp�, where Jnp

− = �−1�n exp�−in�p� and
exp�i�p�= �p+ i�p� /k, performs a coordinate transformation
from the plane wave basis to the cylindrical harmonic basis.
Here �−1/2 is a normalization term consisting of elements p
corresponding to the normal wave vector component of grat-
ing order p.

Combining Eqs. �4� and �19� we form an expression for
the multipole source coefficients generated by the incoming
field

b = − �S� + iM�−1J−�−1/2� , �21�

where S�=S+I, with I denoting the unit matrix. From this,
the reflected and transmitted plane wave coefficients may be
reconstructed �see Appendix A�. We are interested in the
long wavelength case, for which only a single plane wave
order propagates. For simplicity we initially consider only
normally incident light, in which case the reflection and
transmission coefficients for the specular order are given by

r0 =
2

d0
1/2�

n

bn, �22�

t0 = 1 +
2

d0
1/2�

n

�− 1�nbn, �23�

noting that for this symmetric case b−n=bn. Thus the back-
ward and forward scattered fields have respective amplitudes
that are proportional to b0+2b1+2b2+¯ and b0−2b1+2b2
+¯, where the expression may be satisfactorily truncated to
a given multipole order that depends on the frequency of the
light.

We now proceed to verify the empirical results of Sec. III
that indicated a correspondence between forward scattering
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by each cylinder and efficient transmission into the PC. To
do this, we first return to the single cylinder scattering analy-
sis of Sec. III, and derive an appropriate scattering parameter
that allows direct numerical and analytic comparison be-
tween the grating and cylinder properties. Recall from Sec.
III that we used the asymmetry parameter g �10� to identify
strong forward scattering by a single cylinder. While this is a
meaningful measure for a cylinder that scatters light in all
directions, we cannot compute a directly equivalent grating
parameter since the fields scattered by the grating are re-
stricted to the directions of the spectral grating orders. In-
stead, we observe that g can be approximated by considering
the scattering amplitudes in only the backward �Tc�
 /2�� and
forward �Tc�−
 /2�� directions. We therefore define a new
asymmetry parameter for the single cylinder

g̃c =

1 − � Tc�
/2�
Tc�− 
/2�

�2

1 + � Tc�
/2�
Tc�− 
/2�

�2 . �24�

The two parameters g and g̃c are compared in Fig. 7, indi-
cating good qualitative agreement with respect to the for-
ward scattering peaks and the shape of the curves. We note
that significant discrepancies between g and g̃c occur when
there is significant scattering into the backward half-plane
�0�	�
� but Tc�
 /2��0. This effect can be seen towards
the high-frequency end of Fig. 7, where g→0 but g̃c�0.65,
however, it becomes less significant at lower frequencies
when the monopole and dipole scattering terms dominate. In
the dipole approximation, which was shown in Sec. III to be
valid for frequencies up to the second band of the PC, the
ratio of scattering amplitudes �8� in Eq. �24� can be simpli-
fied by writing Tc�
 /2�=b0+2b1 and Tc�−
 /2�=b0−2b1,
which yields

Tc�
/2�
Tc�− 
/2�

=
− 1 + i�M1 − 2M0�
3 + i�M1 + 2M0�

. �25�

Since the Mn terms �5� are real, it is clear that the right-
hand side of Eq. �25� can never vanish. Thus, even when
there is strong forward scattering, as in Fig. 5�g�, there re-

mains a small, but finite, backscattered field and g̃c�1. Re-
call, however, that the grating transmittance spectrum in Fig.
6 exhibits an almost zero reflectance at approximately the
same frequency. To understand why the additional cylinders
in the grating can lead to a null reflectance, we consider the
grating equivalent of Eq. �24� which is given by

g̃G =

1 − � TG�
/2�
TG�− 
/2�

�2

1 + � TG�
/2�
TG�− 
/2�

�2 , �26�

where TG�
 /2�=r0 and TG�−
 /2�= t0−1 are the amplitudes
of the scattered field components only. We note that in con-
trast to the single cylinder, g̃G=1 corresponds to perfect
transmission since, in the single grating order regime, light
can be scattered in only two directions; forward or backward.
Figure 7 shows g̃G plotted on the same axis as g and g̃c for
the same cylinder parameters. While the g̃c and g̃G curves
have significantly different shapes, the locations of the for-
ward scattering peaks are quite similar, with excellent agree-
ment between all three curves close to the second peak at
d /��0.6. These results demonstrate that forward scattering
by each cylinder in a grating manifests as forward scattering
by the grating, and hence, high transmission into the spectral
grating order. As an aside, we note that the sharp feature at
d /��0.55 in the g̃G curve and also in the grating transmis-
sion spectrum in Fig. 6 resembles the resonant reflection and
transmission features observed by Gantzounis et al. in 2D
arrays of spheres �15�. While it is beyond the scope of this
paper to investigate the relationship in detail, it is likely that
these features have a common physical origin associated
with the periodic grating structure rather than a single cylin-
der scattering property. Hence, it is likely that they cannot be
described accurately by the single-cylinder analysis pre-
sented here.

To allow a direct mathematical comparison between the
grating and cylinder scattering, we derive an equivalent ex-
pression to Eq. �25� for the ratio of the grating scattering
amplitudes. In the dipole approximation

TG�
/2�
TG�− 
/2�

=
b0 + 2b1

b0 − 2b1
=

�S2� − S0�� + i�M1 − 2M0�
�3S0� + S2�� + i�M1 + 2M0�

,

�27�

which follows from Eqs. �21� and �22�, as described in Ap-
pendix B. While there are similarities between the cylinder
�25� and grating �27� forms, particularly in the imaginary
part, there are also subtle, yet significant differences intro-
duced by the addition of an array of periodically phased cyl-
inders, the manifestation of which lies in the lattice sums, Sm� .

Explicit forms for the lattice sums have been derived by
Twersky �20� and by Nicorovici et al. �21�, and we have, in
general

S2l� = S2l�
J + iS2l�

Y , �28�

S2l−1� = iS2l−1�J − S2l−1�Y , �29�

where

FIG. 7. Comparison of single cylinder scattering parameters g
�solid� and g̃c �dashed� for a cylinder of index �c=3.0 and radius
rc=0.34d, and g̃G �dotted� for a grating of period d formed from
identical cylinders. The horizontal axis is expressed in units of the
normalized grating frequency, d /�.
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S2l�
J =

2

d
�

p��p

cos�2l�p�
p

, �30�

S2l−1�J =
2

d
�

p��p

sin��2l − 1��p�
p

�31�

with �p denoting the set of propagating plane wave orders
with propagation angles �p and where the quantities S2l�

Y and
S2l�

Y are real. In the case of normal incidence and a single
propagating order, it is evident that S0�

J=S2�
J=2/ �0d�

=2/ �kd� and thus Eq. �27� may be further simplified

TG�
/2�
TG�− 
/2�

=
i�S2�

Y − S0�
Y + M1 − 2M0�

�3S0� + S2�� + i�M1 + 2M0�
. �32�

What distinguishes Eq. �32� from Eq. �27� is that the nu-
merator is now purely imaginary �rather than being com-
plex�. Thus a zero of r0�TG�
 /2�, corresponding to g̃G=1,
may be more easily realized through the solution of one
equation, rather than through the more delicate situation in
which the simultaneous solution of two equations is required.
It is clear from Fig. 8�a� that such a zero can be realized and

that it exactly predicts the location of the null reflectance of
the grating, and in turn the semi-infinite crystal.

The procedure can be generalized to the case of off-
normal incidence, provided that only a single order is propa-
gating. For an incident angle of �0, the backward scattering
amplitude is defined as TG�
 /2+�0� and the forward scat-
tering amplitude is TG�−
 /2+�0�, where the general form of
these two expressions is shown in Appendix B. Although the
details of the analysis are substantially more complicated,
nevertheless, to the same dipole order accuracy, one can
show that the numerator of TG�
 /2+�0� /TG�−
 /2+�0� can
again be rendered either purely real or purely imaginary, thus
admitting the possibility of a genuine null reflectance. This is
illustrated in Figs. 8�b�–8�h� for a range of angles of inci-
dence, from which it is apparent that the reflection null is
remarkably insensitive to the incidence direction. The dipole
order approximation involves five quantities—three lattice
sums S0�, S1�, and S2�, all of which are only slow functions of
the angle of incidence and frequency, and the boundary con-
dition terms M0 and M1. Figure 5�d� shows that b1 passes
through a resonance close to the reflection null, and hence, it
is clear that M1 is the critical term, with its rapid change
dominating the calculation and rendering the location of the

FIG. 8. Plot of the numerator of the back-
scattering amplitude, TG�
 /2−�0�, defined in
Appendix B �dotted�, the reflectance of a single
grating �dashed� and the semi-infinite PC �solid�
as a function of normalized frequency d /� for
�0=0° –70° in 10° increments. Calculations are
to dipole order accuracy.
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reflection null largely insensitive to the angle of incidence,
and close to the single cylinder resonance.

Our procedure for computing a rational function for the
back scattering ratio TG�
 /2� /TG�−
 /2� �in the long wave-
length limit� can be extended to quadrupole accuracy and a
systematic procedure for simplifying the resultant expres-
sions can be derived, again showing that the numerator of
TG�
 /2� can again be rendered real. While we have not pro-
ceeded beyond quadrupole order accuracy, the structure of
the scattering matrix S�+ iM, and the explicit form of the
higher order lattice sums that are involved, lead us to con-
jecture that numerator of TG�
 /2� can be made effectively
real for all multipole truncation orders �in the long wave-
length limit�. Again, this would lead to a realizable zero of
the grating reflectance and a zero of the reflectance of the
semi-infinite crystal.

In the case of shorter wavelengths, however, for which
there can be more than one propagating order, it is not pos-
sible to simplify the form of TG�
 /2� so that it has a numera-
tor that is effectively real, even for the simplest, most highly
symmetric cases. The need to solve two independent simul-
taneous equations to locate a zero of TG�
 /2� is much more
complicated and from our computational studies, we believe
that there is no zero that can be deduced for real incidence
parameters. Accordingly, the near-perfect transmission into a
photonic crystal thus appears limited to the case of long
wavelengths �i.e., single propagating orders in reflection and
transmission�. As we discuss in the next section, this result
has significant implications for coupling to hole-type PCs.

VI. DISCUSSION

Our analysis in Secs. IV and V gives a rigorous justifica-
tion for the numerical observations discussed in Secs. II and
III for coupling to rod-type PCs. While we have presented
results for purely two-dimensional structures, the conclu-
sions are also applicable to three-dimensional PC slab geom-
etries in which highly efficient, wide-angle coupling has
been demonstrated numerically �9�. The results show that
almost perfect coupling coincides with nulls in the reflection
spectrum of a single grating layer of the PC, which in turn
are located close to the forward scattering resonances of the
individual cylinders. Although the analysis presented here is
valid only in the long-wavelength regime where there is a
single propagating grating order, the conditions for perfect
grating transmission are unlikely to occur at higher frequen-
cies for reasons described in Sec. V. Furthermore, a mini-
mum frequency condition is imposed by the requirement for
significant dipole or higher order scattering by each cylinder
to ensure strong forward scattering, as discussed in Sec. III.
These two conditions provide an intuitive explanation for
why rod-type PCs typically exhibit highly efficient coupling
over a wide range of incident angles, whereas air-hole PCs
may require interface modifications in order to achieve sat-
isfactory results �5,7,6�.

For rod-type PCs, where the background refractive index
is lower than that of the rods, the single grating order regime
typically extends to frequencies above the second or third
pass band as shown in Fig. 2, and thus there is a wide pa-

rameter space in which to satisfy the forward scattering con-
dition for the individual cylinders. In air hole PC structures it
is much more difficult to satisfy both conditions simulta-
neously since nonisotropic scattering from air holes only oc-
curs at relatively high frequencies but at the same time the
high index background reduces the frequency at which mul-
tiple plane wave orders appear. For example, if the back-
ground material is silicon ��=3.4�, the first nonzero grating
order appears for large angles of incidence at frequencies
above d /�=0.15, which is well below the second band for
most air-hole PCs.

In conclusion, we have demonstrated highly efficient,
wide angle coupling to uniform rod-type PCs without modi-
fication to the interface. Almost perfect coupling occurs for a
wide range of rod-type PC structures and for both TE and
TM polarizations when the grating layers that form the PC
transmit all incident light into a single diffracted order. Using
a combination of semianalytic and numerical analysis, we
have shown that such behavior is closely related to the for-
ward scattering resonances of each constituent cylinder, and
thus depends only weakly on the incident angle and grating
period. Finally, we have identified the conditions that must
be satisfied in order to achieve highly efficient coupling in
rod-type PCs. PC structures designed to operate under these
conditions could enhance significantly the efficiency of in-
band PC devices.
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APPENDIX A: DERIVATION OF GRATING REFLECTION
AND TRANSMISSION AMPLITUDES

Following from Eq. �21�, the reflected and transmitted
plane wave coefficients may be reconstructed using Green’s
theorem and the Cartesian form of the Green’s function to
derive �17�

r =
2

d
�−1/2K+b , �A1�

t = � +
2

d
�−1/2K−b , �A2�

where K+= �Kpn
+ �, with Knp

+ =exp�−in�p�, and K−= �Kpn
− �, with

Knp
− = �−1�n exp�in�p�. At frequencies where only a single

plane wave order propagates, these two expressions reduce
to Eqs. �22� and �23�.

APPENDIX B: DERIVATION OF GRATING SCATTERING
FUNCTIONS TG„� /2… AND TG„−� /2…

The derivation of the reflected field, TG�−
 /2�=r0 fol-
lows from Eqs. �21�, �A1�, and �22�. In the dipole approxi-
mation we can write

WIDE-ANGLE COUPLING INTO ROD-TYPE PHOTONIC¼ PHYSICAL REVIEW E 74, 026603 �2006�

026603-9



TG�
/2� = b−1 + b0 + b1 = b0 + 2b1,

=K+�S� + IM�−1J−,

=�1 1 1��S0� + iM1 0 S2�

0 S0� + iM0 0

S2� 0 S0� + iM1
�

−1

�− 1

1

− 1
� ,

=
�S2� − S0�� + i�M1 − 2M0�

�S0� + iM1��S0� + S2� + iM1�
, �B1�

where, in simplifying the expressions, we have made use of
the lattice sum identities S−l� = �−1�lSl� and, in the case of nor-
mal incidence S2l−1� =0. Similarly, the component of the field
scattered in the forward direction is given by

TG�− 
/2� = t0 − 1,

=− b−1 + b0 − b1 = b0 − 2b1,

=
�3S0� + S2�� + i�M1 + 2M0�
�S0� + iM1��S0� + S2� + iM1�

. �B2�

Equation �27� follows directly from the ratio of Eqs. �B1�
and �B2�.

In the general case for non-normal incidence at an angle
�0, the backward scattering amplitude in the dipole approxi-
mation is given by

TG�
/2 + �0�

= K+�S� + IM�−1J−

= �ei�0 1 e−i�0�

��S0� + iM1 − S1� S2�

S1� S0� + iM0 − S1�

S2� S1� S0� + iM1
�

−1

� − ei�0

1

− e−i�0
� ,

�B3�

and a similar expression can be found for the forward scat-
tering amplitude TG�−�
 /2+�0��.
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